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Fullerenes, closed carbon cage moleculeg) (@th only

pentagons and hexagons, have been widely investigated since

the discovery of the special stability o2 Although many

fullerene structures are possiBBlenly the isomers satisfying
the isolated pentagon rule (IPRhave been isolated and
experimentally characterizéd.Since the first success in the
extraction of La@@; in 1991° endohedral metallofullerenes
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have attracted special attention because of the potentially novel

properties which cannot be expected from empty fullerenes. Therigure 1. The optimized structures of Ca@cC Structurea (Cy)
interesting electronic properties and reactivities have been satisfies the isolated pentagon rde(C,) andc (Cy,) contain a pair of

extensively investigated, as summarized in a recent re¥/iEve

structural determination is currently of primary interest.
Recently, the structures of isolated, representative metallof-

ullerenes such as M@g(M = Ca, Sc, Y, and La), L# Cgo,

and Se@GCgs have been disclosed through close interplay

between theoretical predictiband experimeritas summarized

in recent review&10 In all these cases, IPR-satisfying fullerene

cages are found, as in the case of empty fulleréhdsowever,
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it is an open question whether metal atoms stabilize unconven-
tional cage structures during growth and annealing processes.
We now report possible violation of IPR and the appearance of
a heptagon-containing structure through theoretical calculations
of Ca@G» and Go.

Geometries were optimized at the Hartréeck (HF) level
with use of the Gaussian 94 prografnyith the effective core
potential and contracted (5s5p)/[4s4p] basis set dA &l split-
valence 3-21G basis set onl®. Energies were improved by
single-point nonlocal hybrid density functional calculations at
the tIJ33P and B3LYP leveld with a larger 6-31G basis set on
C.l4

For the present purpose, a total of 431 240 closed cage
structures composed of pentagons, hexagons, and one heptagon
was generated for&with use of the GSW program developed
recently’® Among these, 11190 structures correspond to
conventional fullerene3and one of them witlDgy Symmetry
satisfies IPR. The endohedral structueg ¢f Ca@G. opti-
mized with thisDgg cage is shown in Figure 1, which h&s
symmetry.

However, we have succeeded in finding much more stable
structuresb (C;) and ¢ (Cz). As Figure 1 shows, these
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structures contain a pair of adjacent pentagons. Neverthelesscollected were optimized with use of the MM3 metfddThe

b is 38.2 (B3P) and 37.4 (B3LYP) kcal/mol more stable than
a, while cis 36.6 (B3P) and 36.2 (B3LYP) kcal/mol more stable
than a. These are the first examples invalidating the IPR
established in fullerene chemist%. The HOMO levels of-7.0
and—6.4 eV forb andc are 1.4 and 0.8 eV lower than that of
—5.6 eV fora at the HF level, respectively, suggesting that
andc are less reactive (especially toward oxygen) tadhUpon
geometry optimization without Ca, the carbon cagé & 10.6
(B3P) and 10.2 (B3LYP) kcal/mol less stable than the(©eq)

most stable 50 structures within the energy range of ca. 50 kcal/
mol were then reoptimized with use of the AM1 metHéd.
Among these, the most stable fof £ was the carbon cage of
b.23 Next, the neighboring index of each hexagon (defined as
the number of other hexagons to which it is adjacéntjas
employed as a strain energy criterion. As a result, a total of 10
structures with small hexagon indices was searched. By
optimizing these, the most stableZ cage was selected for
c.2® Finally, the number of pentagetheptagon fusions was

cage. On the other hand, it was found that the carbon cage ofcounted since the stability of heptagon-containing structures

cis 8.7 (B3P) and 8.4 (B3LYP) kcal/mol more stable than C
(Ded) even after optimization without Ca. This finding, a stable
non-IPR structure for &, is also noteworthy since the structure
and stability of G, have long been controversial among IPR-
satisfying fullereneg!® It is interesting to note that the carbon
cage ofc is formally obtainable by addingZ{®nto a hexagonal
ring in the belt of the @ (Dsp) fullerene.

Another important finding is structui(Cs) shown in Figure

increases with an increase in the num®eand the energies of
C722~ were compared. The carbon cagedoivas thus found.
Very recently, Ca@& has been isolated and purifiét. At
least three isomers could be separated, for whi¢fCaNMR
study is in progres® We predict thab andc should be found
among the possible structures of Ca@€ In addition, we
could suggest that L&C;, also takes on similar cage struc-
tures?® It is expected that the present findings, a stable

1. The carbon cage contains one heptagonal ring (Surroundecheptagon'containing StrU.CtUre as well aS.the violation of the
by f|Ve ad]acent pentagons), thereby not Obey|ng the trad|t|ona| ISO|ated pentagon rule, W|” eXtend and enl’ICh the I’esearch area

definition of fullerenes. Howeved was calculated to be 19.0
(B3P) and 18.4 (B3LYP) kcal/mol more stable tranTo our

of endohedral metallofullerenes.
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Cez has no isolated-pentagon structure. The heptagon-containing;ag733088

cage ofd becomes much less stable by 26.2 (B3P and B3LYP)

kcal/mol than G (Ded), upon optimization without Ca.

The carbon cages f, ¢, andd were found from the 431 240
structures of & in the following way. First, all structures
reachable within three steps of generalized StoVales
rearrangements starting from&Deq) were collected by using
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